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Kriging with Inequality Constraints 1

Petter Abrahamsen2,3 and Fred Espen Benth2

A Gaussian random field with an unknown linear trend for the mean is considered. Methods for
obtaining the distribution of the trend coefficients given exact data and inequality constraints are
established. Moreover, the conditional distribution for the random field at any location is calculated
so that predictions using e.g. the expectation, the mode, or the median can be evaluated and prediction
error estimates using quantiles or variance can be obtained. Conditional simulation techniques are
also provided.

KEY WORDS: Bayesian kriging, Data Augmentation Algorithm, Gaussian random field, fixed point
iterations.

INTRODUCTION

Consider the problem of mapping a random field{Z(x); x ∈ Rd} where the mean
is unknown. Linear kriging techniques are widely used for this purpose but they do
not allow the use of inequality constraints. The objective of this paper is therefore
to suggest a method for predicting and simulating a Gaussian random field given
inequality constraints where the value ofZ(x) is known to belong to a set of values
Bx, i.e., Z(x) ∈ Bx. The setBx can be an interval, a one sided constraint, or even
any Borel set.

Methods for predictions with associated prediction errors and conditional
simulations will be given. The approach—first presented in Abrahamsen and
Benth (1998)—adapts the Data Augmentation Algorithm (Tanner and Wong, 1987;
Tanner, 1993), which is a Monte Carlo technique for finding the fixed point of an
integral operator. The Data Augmentation Algorithm is efficient for calculating
the distributions of trends andZ(x) at a small number of locations. However, cal-
culating the distributions ofZ(x) at every node in a large grid will require too
much computer resources. Therefore, an approximation for the expectation and
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variance ofZ(x) is also provided. The approach is illustrated by a small syn-
thetic one-dimensional (1D) example and a two-dimensional (2D) example for
mapping a geological horizon using observations from vertical and horizontal
bore-holes.

Several approaches to include interval constraints have been proposed in the
literature. Indicator kriging approaches include inequality constraints in a natural
way (Journel, 1986). Dubrule and Kostov (1986) and Kostov and Dubrule (1986)
proposed a solution to fit a surface to both exact data and inequality constraints
using the dual kriging formalism and quadratic programming. The approach finds
the minimum number of violated constraints and use their bounds as exact data.
This method has been adapted for larger data sets by Langlais (1989). However,
citing Journel (1986, p. 273): “Of course, one may question a solution consisting
of replacing inequality data by hard data identified to the bounds.” The dual kriging
formalism does not provide prediction errors. Diamond (1988) develops interval
kriging where interval valued data are the natural observations. Freulon and de
Fouquet (1993) use a rejection sampling technique for simulating a Gaussian
field conditioned on a small number of inequality constraints and a Markov chain
Monte Carlo approach when the number of constraints is large. Stein (1992) also
use a Monte Carlo technique to evaluate high dimensional integrals to obtain
posterior distributions. Choi, Christakos, and Serre (1998) have explored the effects
of inequality constraints using the so-called Bayesian maximum entropy analysis
and Militino and Ugarte (1999) have used the Expectation-maximization (EM)
algorithm for predicting uranium grade at censored locations.

NOTATION

We consider a random fieldZ onRd with a linear trend:

Z(x) = f ′(x)β + ε(x); x ∈ Rd,

wheref ′(x) = [ f1(x), . . . , fP(x)] are P known functions andβ = [β1, . . . , βP]′

are P coefficients. Theε(x) is a zero mean Gaussian random field with known
covariance function. Moreover, theP coefficients are assumed to have a prior
multinormal distribution:

β ∼ NP(µ0,Σ0) (1)

Thus,Z is a Gaussian random field with expectation and covariance:

E{Z(x)} = f ′(x)µ0

Cov{Z(x), Z(x′)} = f ′(x)Σ0f(x′)+ Cov{ε(x), ε(x′)}
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Data

Let N be exact observations ofZ(x) given by

Ze =

 Z
(
xe

1

)
...

Z
(
xe

N

)
 =

 z
(
xe
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)
...

z
(
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)


Furthermore, we assume that there areM inequality constraints onZ(x):

Z i =

 Z
(
xi

1

)
...

Z
(
xi

M

)
 ∈

 B1
...

BM


whereB1, . . . , BM are intervals on the real line, or more general, Borel subsets
of R. The whole set of inequality constraints are denotedBi = B1× · · · × BM ,
so thatBi is a Cartesian product ofM intervals, or more general,Bi could be any
Borel set inRM . The inequality constraint onZ i is writtenZ i ∈ Bi .

In the following, several probability density functions (pdf’s) are considered.
For a general (non-normal) pdf the symbolf (·) is used, for normal densitiesϕ(·)
is used, and truncated normal densities are denoted ¯ϕ(·). Note thatZ(x),Ze,Z i ,
andβ have a joint multinormal distribution, i.e.,ϕ(z(x), ze, zi,β), and that the
conditional distributionϕ(z(x) | zi, ze,β) is also normal. The pdf ¯ϕ(z(x), zi | zi ∈
Bi ) = ϕ̄(z(x), zi | Bi ) is truncated normal, whereBi is used as shorthand forzi ∈ Bi .
The densityf (z(x) | ze,β,Bi ) is neither normal nor truncated normal.

POSTERIOR DISTRIBUTIONS

Let us consider an arbitrary set ofK locations{x1, . . . , xK }, and the random
field at these locations organized as a vector:

Z = [Z(x1), . . . , Z(xK )]′.

The objective is to find the posterior distribution ofZ given the exact data,Ze =
ze, and the inequality constraints,Z i ∈ Bi . Denote this density asf (z | ze,Bi ).
Given this pdf, predictors using expectation, median, or mode can be evaluated
and uncertainty measures such as variance and quantiles can be calculated. In
particular,z?(x) = E{Z(x) | ze,Bi} is the natural extension of the standard linear
kriging predictor. Also of interest is to find the posterior distribution ofβ, denoted
f (β | ze,Bi ), so it is convenient to consider the joint pdff (z,β | ze,Bi ).
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Following Tanner and Wong (1987) and Tanner (1993), the posterior density
can be expressed as the fixed point of an integral equation (see Appendix):

f (z,β | ze,Bi ) =
∫
RP

∫
RK

K (z,β; z̃, β̃) f (z̃, β̃ | ze,Bi ) dz̃dβ̃ (2a)

where the transition kernel is

K (z,β; z̃, β̃) =
∫
RM
ϕ(z,β | ze, zi )ϕ̄(zi | ze, z̃, β̃,Bi ) dzi . (2b)

The fixed point can be computed by iterating

f (n+1)(z,β | ze,Bi ) =
∫
RP

∫
RK

K (z,β; z̃, β̃) f (n)(z̃, β̃ | ze,Bi ) dz̃dβ̃ (3)

Convergence follows since the kernel satisfies the criteria in Tanner and Wong
(1987).

Analytical integration of the integrals in the fixed point iterations is not pos-
sible and numerical integration will at best be inaccurate for higher dimensions.
The following algorithm is a Monte Carlo evaluation of the integrals in (3) where
approximate densities are represented by (large) samples.

Data Augmentation Algorithm . Given the approximationf (n)(z,β | ze,Bi ):

(a) Draw S samples,zi
(1), . . . , z

i
(S) from f (n)(zi,β | ze,Bi ). This is done in

two steps:
(a1) Drawβ̃(s) from f (n)(β | ze,Bi ).
(a2) Drawzi

(s) from ϕ̄(zi | β̃(s), z
e,Bi ) by sampling fromϕ(zi | β̃(s), ze)

until zi
(s) ∈ Bi .

(b) Update the approximation to be

f (n+1)(z,β | ze,Bi ) = 1

S

S∑
s=1

ϕ
(
z,β | ze, zi

(s)

)
(4)

whereϕ(z,β | ze, zi
(s)) are normal densities.

Step (a) generate “latent” inequality constraints given the exact data by sam-
pling from the density

f (n)(zi | ze,Bi ) =
∫
RP

∫
RK
ϕ̄(zi | ze, z̃, β̃,Bi ) f (n)(z̃, β̃ | ze,Bi ) dz̃dβ̃

Theϕ̄(zi | ze, z̃, β̃,Bi ) part comes from (2b) andf (n)(z̃, β̃ | ze,Bi ) comes from (3).
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Thus, Step (a) essentially performs two of the integrals in the fixed point iteration.
However,z̃ are dummy variables and can be ignored since

f (n)(zi | ze,Bi ) =
∫
RP
ϕ̄(zi | ze, β̃,Bi ) f (n)(β̃ | ze,Bi ) dβ̃

In Step (a1) drawingβ from f (n)(β | ze,Bi ) is done by drawing from one randomly
selected distribution in the sum in (4);z is only considered in the final iteration.
Step (b) is an evaluation of the kernel (3) of the fixed point integral:∫

RM
ϕ(z,β | ze, zi )ϕ̄(zi | ze, z̃, β̃,Bi ) dzi

where the integral is replaced by the sum overzi ’s drawn from f (n)(zi | ze,Bi ) in
Step (a).

The efficiency of the algorithm depends on the rate of rejections in
Step (a2). The rejection rate is large when eitherf (n)(zi | ze,Bi ) is a poor ap-
proximation to f (zi | ze,Bi ) or when the constraintzi ∈ Bi is very restrictive,
that is, when ¯ϕ(zi | ze,Bi ) is very different fromϕ(zi | ze). The first problem
is solved by starting the algorithm using a smallS in the initial iterations
and then increasing the number asf (n)(zi | ze,Bi ) approachesf (zi | ze,Bi ).
Our experience is that starting withS= 2 at the first iteration and then dou-
bling S for the 10–13 first iterations is efficient. The problem of very restric-
tive constraints must be solved by implementing smart rejection sampling
techniques.

The Data Augmentation Algorithm needs an initial distribution ofβ. In the
examples below we have usedf (0)(β | ze,Bi ) = ϕ(β | ze) but more sophisticated
choices including some inequality constraint information are possible.

Posterior Distribution of β

If the objective is limited to obtain moments for the distribution ofβ, the
Data Augmentation Algorithm simplifies slightly. Step (a) is exactly the same but
in Step (b) any reference toz can be removed so (4) is replaced by

f (n+1)(β | ze,Bi ) = 1

S

S∑
s=1

ϕ
(
β | ze, zi

(s)

)
Note that this is the algorithm we would obtain if we removed all references toz
andz̃ in (2a) to (3) and in the Data Augmentation Algorithm.
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Posterior Distribution for Z

Notice thatz-samples from previous iterations are never used in later iterations
in the Data Augmentation Algorithm. Therefore, to obtain the posterior distribution
f (z | ze,Bi ), only β is sampled in all but the last iteration. Afterf (n)(β | ze,Bi )
has converged to the necessary precision,z andβ can be drawn in the last iteration
of the Data Augmentation Algorithm.

Usually we are interested in prediction ofZ at a single location,x. So replacing
z by z(x) in (4) and simply ignoring theβ samples in the final iteration gives

f (n)(z(x) | ze,Bi ) = 1

S

S∑
s=1

ϕ
(
z(x) | ze, zi

(s)

)
An approximation to the conditional expectation atx is therefore

z?(x) = E{Z(x) | ze,Bi} ≈ 1

S

S∑
s=1

E
{
Z(x) | ze, zi

(s)

}
Multimodal distributions might givez?(xi

n) /∈ Bi
n so the mode or some other

statistic should be used for the predictor. This is illustrated in Example B in the
following section.

Ignoring β in the Data Augmentation Algorithm

To obtain f (β | ze,Bi ), all references toz can be ignored in (2a) to (3) and
in the Data Augmentation Algorithm. Similarly, it is possible to ignoreβ in (2a)
to (3) and obtain an alternative Data Augmentation Algorithm for calculating
f (z | ze,Bi ). Step (a2) is then removed, together with all references toβ and
β̃(s). Our experience, however, has shown that it is advantageous to includeβ in
the algorithm, since the rejection rate in Step (a2) is decreased significantly. The
samplesβ̃(s) contain information about the inequality constraints which makes
φ(zi | β̃(s), z

e) a better approximation tōφ(zi | β̃(s), z
e,Bi ) thanφ(zi | ze). This

argument holds only if the cost of drawing̃β(s) does not out-balance the increased
acceptance rate in Step (a2).

ONE-DIMENSIONAL EXAMPLES

To illustrate how inequality constraints influence the prediction of random
fields, we used the Data Augmentation Algorithm on two simple one-dimensional
examples. The examples will show that inequality data may produce highly
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non-Gaussian posterior distributions, unlike kriging with equality data. In fact,
distributions may become bimodal (or more generally, multimodal). We shall also
through these examples see that the standard choice of the expectation as a pre-
dictor may be questioned in the context of inequality kriging, since it may violate
the constraints. Because of the simplicity of the examples, we can discuss the
convergence properties of the Data Augmentation Algorithm.

Let us consider the linear regression model

Z(x) = β0+ β1x + ε(x); x ∈ R

whereε(x) is a Gaussian random field with zero mean, unit variance, and a spherical
correlation function with range 4. The prior distribution for the coefficients is
β ∼ N2([0

0], [102 0
0 22]). The prior variances are two orders of magnitude larger than

the posterior variances obtained below and is almost “noninformative.” We assume
three equality constraints at the locationsx = 2.5, 5.5, and 8 are given, with values
Z(2.5)= 0.1, Z(5.5)= 0.9, andZ(8)= 0.6. At the locationsx = 0 andx = 10,
we suppose in Example A that we have the inequality dataZ(0)< 0 andZ(10)< 1.
Example B substitutes the upper bound on the fieldZ(x) at locationx = 10 with
the constraintZ(10) /∈ [1, 3.5], that is, the fieldZ(x) is not allowed to pass through
the interval [1, 3.5] atx = 10. We now discuss the results from Examples A and
B in more detail.

Predicting β

Figure 1 shows the regression lines obtained in Examples A. The marginal
posterior probability densities for the interceptβ0 and the slopeβ1 are shown in
Figure 2. The pdf’s are obtained using kernel smoothing of 8192 (=213) samples.
The figures illustrate that both inequality constraints alter the expectations and re-
duce the variances. It is also seen that the conditional distributions for the intercept
and the slope are very close to being Gaussian. In all examples we have tested
using closed or one-sided intervals as constraints, the conditional distributions for
β looks Gaussian. Example B, however, gives a highly non-Gaussian result.

Figure 3 shows the regression lines and data when the inequality constraint
at x = 10 is changed so thatZ(10) /∈ [1, 3.5]. Figure 4 shows the corresponding
posterior marginal probability distributions for intercept and slope. Observe that
the regression lines pass through the “illegal” interval and the distribution for the
slope becomes bimodal.

Predicting Z(x)

Figure 5 illustrates the marginal distributions ofZ(x) | ze,Bi by showing
quantiles and expectations as a function ofx for Examples A and B. The statistics
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Figure 1. Trends using coefficients E{β | ze,Bi} (solid line) and
E{β | ze} (dashed line) for Example A. Exact data are plotted as dots
and interval constraints as arrows. The allowed region is outside the
arrows. Vertical axis isz.

are based on 8,192 samples ofZ(x). Note that the predictor E{Z(x) | ze,Bi} passes
through the “illegal” interval atx = 10 in Example B. The median however, honors
the interval constraint. In Example A the conditional expectation behaves nicely,
but the median is slightly above since the distributions are skew. The skewness is
caused by the inequality constraint and is not a random effect coming from the
Monte Carlo sampling.

Convergence Rates

There are two sources of errors in the algorithm: The number of fixed point
iterations are limited and the number of samplesSof β andZ(x) in the final itera-
tions are also limited. The two examples above were obtained by usingS= 2
in the initial fixed point iteration and then doublingS at each iteration until
S= 8192 at iteration 13. From then onS was kept unchanged. Figure 6 shows
how the distributions of the slope evolves as the number of fixed point itera-
tions increase. The convergence for Example A is rapid and after 10 iterations
(S= 1024) the levels seem to stabilize. IncreasingSafter this is mainly to reduce
Monte Carlo noise. In Example B, however, convergence is very slow. Forty it-
erations are shown on the plot Figure 6 and the levels does not stabilise until at
least 35 fixed point iterations have been run. The problem seems to be that the
number ofβ1 samples from the highest mode is underestimated during the initial
iterations.
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Figure 3. Trends using coefficients E{β | ze,Bi} (solid line) and
E{β | ze} (dashed line) for Example B. Exact data are plotted as dots
and interval constraints as arrows. The allowed region is outside the
arrows. Vertical axis isz.

A FAST APPROXIMATION

Evaluating the conditional expectation using the Data Augmentation Algo-
rithm for every node in a large grid is very time consuming so an approximation
is called for.

Let us assume that the inequality constraintsB1, . . . , BM are such that the
posterior pdf’s forZ(x) are close to being normal. Then the conditional expec-
tation, z?(x) = E{Z(x) | Ze = ze,Z i ∈ Bi}, can be used as a predictor. The idea
is to replace the constraintsZ i ∈ Bi by artificial “exact” data with multinormal
“measurement errors” at the locations of the inequality constraints, that is,

Z i ∈ Bi → Z i
d = Z i + εi

err = zi
d

with a multinormal zero mean “measurement error”:εi
err ∼ NM (0,Σi

err). The
“measurement error” is independent ofβ and ε(x). The posterior distribution,
ϕ(z(x) | ze, zi ), is normal since the “measurement error” is multinormal and effi-
cient (linear) kriging methods work. In particular E{Z(x) | Ze = ze,Z i

d = zi
d} and

Var{Z(x) | Ze = ze,Z i
d = zi

d} are given by standard formulas from multinormal
analysis.

The problem is to find good values for artificial datazi
d, and the “measurement

error” covariance matrix,Σi
err. We propose to select these such that the posterior

expectations and covariances at the constrained locations are correct:

E
{
Z i | Ze = ze,Z i

d = zi
d

} != E{Z i | Ze = ze,Z i ∈ Bi} (5)
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Var
{
Z i | Ze = ze,Z i

d = zi
d

} != Var{Z i | Ze = ze,Z i ∈ Bi}. (6)

The correct moments given interval constraints—that is, the right-hand sides—
must be obtained using the Data Augmentation Algorithm. Hopefully, approxi-
mations

E
{
Z(x) | Ze = ze,Z i

d = zi
d

} ≈ E{Z(x) | Ze = ze,Z i ∈ Bi}
Var

{
Z(x) | Ze = ze,Z i

d = zi
d

} ≈ Var{Z(x) | Ze = ze,Z i ∈ Bi}

for arbitrary locationsx, will have an acceptable small error since they are correct
at the locations of exact data and inequality constraints.

It is possible to find closed forms for the artificial data vectorzi
d and the error

covariance matrixΣi
err satisfying requirements (5) and (6). Before expressions for

these are given, some additional notation is introduced for convenience. We will
need covariances between two arbitrary vectors containing values from the random
field Z(x):

Cuv = Cov{Zu,Zv} = Kuv+ FuΣ0Fv′

whereKuv = Cov{εu, εv}, Fu
np = f p(xu

n), andΣ0 is the prior covariance matrix for
β; see (1).

Consider the conditional expectation forZ′ = [Z(x1), . . . , Z(xK )] given ex-
act data,Ze = ze, and artificial data,Z i

d = zi
d. From standard multinormal theory,

conditional expectation and covariances are

E
{
Z | Ze = ze,Z i

d = zi
d

} = Fµ0+ [Ce Ci ]

[
Cee Cei

Cie Cii +Σi
err

]−1 [
ze− Feµ0
zi

d− Fiµ0

]
(7)

Var
{
Z | Ze = ze,Z i

d = zi
d

} = C− [Ce Ci ]

[
Cee Cie

Cei Cii +Σi
err

]−1 [
Ce′

Ci′

]
(8)

whereC = Var{Z} andCu = Cov{Z,Zu}. Expression (7) is the Bayesian krig-
ing predictor and (8) is the associated prediction error (Kitanidis, 1986, Omre,
1987).

By lettingZ = Z i in (8) and solving forΣi
err gives

Σi
err =

[
Var

{
Z i | Ze = ze,Z i

d = zi
d

}−1− (Cii − CieCee−1Cie′)−1
]−1
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This result can be confirmed using matrix algebra found in, e.g., Mardia, Kent
and Bibby (1979, pp. 458–459). IntroducingΣi = Var{Z i | Ze = ze,Z i ∈ Bi},
and

Ci|e = Var{Z i | Ze} = Cii − CieCee−1Cie′

and imposing (6) gives

Σi
err =

[
Σi−1 − Ci|e−1]−1 = Σi +Σi [Ci|e−Σi ]−1Σi (9)

It can be seen thatCi|e > Σi in the sense that (Ci|e−Σi ) must be positive definite
for (9) to give a valid covariance matrix. This is reasonable since the constraints
should add information and therefore reduce the uncertainty at the constrained
locations. In the following, two examples of this problem is encountered and a
remedy is prescribed in the section containing the case-study. Note however that
the algebra leading to (9) does not require thatCi|e−Σi is positive definite. It
only requires that the inverse ofCi|e−Σi exist. Moreover, ifΣi

err fails to become
a valid covariance matrix, (7) and (8) can still be used and will give meaningful
results. However, the interpretation ofzi

d as artificial data with error covariance
Σi

err is no longer valid.
The next step is to solve (7) forzi

d and impose (5). Again for notational
simplicity,µi = E{Z i | Ze = ze,Z i ∈ Bi} is introduced, so that the solution can be
written

zi
d = Fiµ0−Σi

errC
i|e−1

CieCee−1(ze− Feµ0)+Σi
errΣ

i−1
(µi − Fiµ0) (10)

Insertingzi
d andΣi

err from (10) and (9) respectively in the predictor (7) and pre-
diction variance (8) give the required properties. In most practical applications,Z
in (7) and (8) is replaced by a single variableZ(x).

In some cases the conditionCi|e > Σi fails so thatΣi
err is not positive definite.

Then, the interpretation ofεi
err being a “measurement error” is not valid. However,

using expressions (7) and (8) as approximations to (5) and (6) is still possible as
long as [C

ee Cie

Cei Cii+Σi
err

] is positive definite.

Example

Consider the simple one-dimensional example illustrated in Figure 1. In
Figure 7 the exact expectation, E{Z(x) | Ze = ze,Z i ∈ Bi}, is compared to the
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Figure 7. The approximated expectation± standard error are shown
as solid lines. Expectation± standard error forZ(x) | Ze = ze,Z i ∈
Bi are shown as dashed lines. Corresponding linear trend lines are
shown as straight dashed and solid lines respectively. The two artificial
datazi

d are shown as squares.

approximation E{Z(x) | Ze = ze,Z i
d = zi

d}. This figure shows that the approxi-
mate method does not obtain the correct trend since the expectation curves depart
away from data locations.

Getting the Trends to Fit

To adjust theP trend coefficients,P additional artificial data are added in the
following way

Z i
dM+p = βp + ε i

errM+p = zi
dM+p; p = 1, . . . , P

This means thatZ i
dM+pi ; p = 1, . . . , P links to Z(x) throughβ alone; allM + P

elements ofεi
err are assumed independent ofβ andε(x).

Additional requirements in (5) and (6) must be added to incorporate the trend
parameters. This is done by replacingZ i′ by [Z i′β′] in (5) and (6).

The arguments leading to the determination of the artificial data vectorzi
d and

the observation error covariance matrixΣi
err holds, but some care in expanding the

different F andC matrices is necessary. For instanceFi′ is replaced by [Fi′ I P],
whereI P is a P dimensional identity matrix. Similarly, covariances involvingZ i

d
must be replaced by enlarged matrices including contributions from theP new
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Figure 8. The approximated expectation± standard error using ad-
ditional artificial data to fit the trend are shown as solid lines. Expecta-
tion± standard error forZ(x) | Ze = ze,Z i ∈ Bi are shown as dashed
lines. Corresponding linear trend lines are shown as straight dashed
and solid lines respectively. The two artificial datazi

d are shown as
squares.

elements:

Ci →
[

Ci

FΣ0

]
, Cei→

[
Cei

FeΣ0

]
, and Cii →

[
Cii

Σ0Fi′
FiΣ0

Σ0

]

Example with Fitted Trend

Once again consider the one-dimensional example illustrated in Figure 1.
In Figure 8 the exact expectation E{Z(x) | Ze = ze,Z i ∈ Bi} is compared to the
approximation E{Z(x) | Ze = ze,Z i

d = zi
d}, where two additional data are added

to fit the trend. The figure shows that the trends are correct in this second attempt.

Problems with Σi
err

In the first approximation (see Fig. 7) the “measurement error” covariance
matrix is

Σi
err =

[
2.37 −0.01

0.64

]
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which is a covariance matrix. When introducing two additional data to adjust the
trend, the error matrix becomes

Σi
err =


1.36 0.11 −0.29 −0.02

0.68 −0.07 0.02

3.35 −0.32

−0.003


which is not a covariance matrix since the last “variance,”−0.003, is negative.
Despite this, the approximate predictor works in the sense that the algebra is valid
and the result shown in Figure 8 is meaningful. However, this is a sign of problems
that have to be handled. We present more on this in the full-scale case study in the
next section.

A TWO-DIMENSIONAL CASE STUDY

The example in this section is an application of the approximation outlined
in the previous section. A geological horizon is known exactly at seven locations
(Fig. 9) where bore-holes have penetrated the horizon. Two of these bore-holes
(26B and 27) proceed almost horizontally below the horizon toward the south. They
provide the information that the horizon must be above these two well trajectories.
The two well trajectories have been sampled at approximately 100-m intervals,
which makes a total of 33 samples. This gives 7 “exact” data and 33 “inequality”
constraints. The regular grid used to represent the surface consists of 61× 91=
5,551 grid nodes.

The model for the depth to the horizon is

Z(x) = β1t(x)+ β2t(x)(t(x)− 1.17 sec)+ ε(x); x ∈ R2,

wheret(x) is the one-way seismic travel times to the horizon. A map of the travel
times can be seen in Figure 9. The linear regression model for the trend is con-
structed such that the seismic sound velocity model is

v(x) = β1+ β2(t(x)− 1.17 sec)

The approximate average of thet(x)-map is 1.17 sec, and is subtracted to reduce
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Figure 9. Contoured map of two-way travel times to horizon in milliseconds. The location of vertical
well observations are marked by dots and the name of the well. The two horizontal wells are seen as
two rows of dots.

the otherwise high collinearity in the model. This has no influence on the final
result but makesβ estimates less correlated.

We have selected a spherical variogram with range 3000 m for the errorε(x).
This has in our experience proven to be a reasonable choice in several similar case
studies. The standard error of the residual was chosen to be 40 m.
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Table 1. Expectation and Standard Errors in the Prior and Posterior Distributions ofβ

Prior guess Posterior given exact data Posterior given all data

Expec. Stand. err. Expec. Stand. err. Expec. Stand. err.

β1(m/sec) 2.000 1.000 2.160 24 2.157 23
β2(m/sec2) 0 10.000 247 929 −772 723

Estimation of Trend Parameters

The prior guess onβ and the result from conditioning on data is summarized
in Table 1. The posterior distribution given all data was obtained using the Data
Augmentation Algorithm. A systematic reduction in the standard errors is verified;
moreover, we can see that inequality constraints change the posterior distribution
significantly.

Surface Prediction

Figures 10 and 11 show maps of predicted depth using only exact data and
all data respectively. The map in Figure 11 was obtained using the approximation
presented in the previous section. Figure 12 shows the difference between the
predictions. The figures show that constraints from the horizontal wells “push” the
predicted depths up.

Note that there is hardly any local effect from the inequality constraints; they
mainly influence the trend. So each individual constraint has hardly any influence
but as a group they have considerable impact. This caused some severe problems
discussed in the next section.

Removal of Noninformative Constraints

When trying to compute the prediction using all data we immediately
ran into problems. The positive definite condition on the matrix (Ci|e−Σi )
in (9) was not met. The simple reason was that the impact of some of the in-
equality constraintsi was negligible so [Ci|e] i i ≈ [Σi ] i i . The Monte Carlo un-
certainty inΣi makes this even worse so negative differences occurred. This
will be a frequent practical problem because it is very difficult in advance to
know whether an inequality constraint actually carry information or not. For
densely sampled constraints such as observations along a horizontal well we
must also expect complications since the constraints carry almost identical
information.
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Figure 10. Contoured map of predicted depth using the 7 exact data. The location of vertical well
observations are marked by dots and the name of the well.

To cure these problems, we tried to identify and remove the troublesome
constraints. We suggest the following steps for removing them:

1. Remove constrainti if √
Ci|e

i i −
√

Σi
i i < 0

This means that constrainti must reduce the prediction error.
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Figure 11. Contoured map of predicted depth using 7 exact and 19 inequality constraints. The location
of vertical well observations are marked by dots and the name of the well. The two horizontal wells
are seen as two rows of dots. Note that some of the observations seen in Figure 9 are absent.

2. The matrix (Ci|e−Σi ) must have the properties of a covariance matrix
with a corresponding correlation matrix. Off-diagonal elements of this
correlation matrix must be in the range [−1, 1]. The minimum necessary
number of constraints was removed to make all correlations within the
range [−0.99, 0.99].
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Figure 12. Contoured map of the difference between the predicted depth maps in Figure 10 and
Figure 11.

3. Remove remaining constraintsi if none of the following criteria are met:(√
Ci|e

i i −
√

Σi

)/√
Ci|e

i i > 0.05 or
(∣∣E{Z i

i

∣∣ Ze
}− µi

i

∣∣)/√Ci|e
i i > 0.1
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Thus, either the constraint must reduce the prediction error more than
5% or it must influence the expectation by more than 10% relative to the
prediction error at the location.

The three steps above were used to remove 14 inequality constraints, leaving
19 (Fig. 11). These 19 should carry almost all constraining information in the
full set.

However, removing the 14 inequality constraints was not enough to ensure
that the now 19-dimensional matrix (Ci|e−Σi ) was positive definite. To ensure
this we changed the correlation matrix of (Ci|e−Σi ) toward the correlation matrix
of Ci|e. This is an indirect way of changing the off-diagonal elements ofΣi without
affecting the variances. The idea is that maintaining the correct variances is far
more important than getting the correlations exactly reproduced. The resulting
modified Σi was positive definite although this procedure does not guarantee
that.

The effect of the approximations and thead hocdata reduction procedures on
the maps is difficult to evaluate since calculating the correct distribution using the
Data Augmentation Algorithm would require enormous amounts of computation
resources.

CONDITIONAL SIMULATION

The Data Augmentation Algorithm can be used for samplingZ from
f (n)(z,β | ze,Bi ) in (4). However,Z might have 104 or more elements when a
dense grid is used for representing the random field. The dimension ofZ will
then limit the efficiency of the Data Augmentation Algorithm dramatically so an
alternative is necessary.

The following is a sequential simulation algorithm motivated by the
identity

f (z | ze,Bi ) =
∫
RP

∫
Rm
ϕ(z | ze, zi,β)ϕ̄(zi | ze,β,Bi ) f (β | ze,Bi ) dzi dβ (11)

Simulation Algorithm

(a) Drawβ̃ from f (β | ze,Bi ) using the Data Augmentation Algorithm.
(b) Drawz̃i from ϕ̄(zi | ze, β̃,Bi ) by drawing fromϕ(zi | ze,β) until z̃i ∈ Bi .
(c) Drawz from ϕ(z | β̃, ze, z̃i ).

Drawingz in Step (c) is the standard conditional simulation problem of con-
ditioning a Gaussian random field with known trend,f ′(x)β̃, to “hard” dataze and
z̃i . Thus, the Data Augmentation Algorithm is used as a preprocessor to established
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a set of simulated values forβ andzi . These, are simply used as hard data in any
established conditional simulation procedure.

DISCUSSION

A method for conditioning a “universal kriging” model on inequality con-
straints has been presented. The Data Augmentation Algorithm provides a method
to find the posterior distributions of Gaussian random fields. In our experience, it
seems that the posterior trend has an almost Gaussian posterior density in many
natural cases. However, if we use constraints forcing the field to be outside of a
forbidden interval, the trend may become bimodal and the conditional expectation
may violate the constraints.

Predicting values in a large grid requires approximations. We suggest a
method where the inequality constraints are replaced by “equivalent” point data
with error bounds. This method has been tested on a large-scale case study and
showed that it needs refinement.

Conditional simulation can be performed by letting the Data Augmentation
Algorithm provide samples ofβ andzi , and then conditioning the random field on
these.
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APPENDIX

Evaluation of (2a) and (2b)

f (z,β | ze,Bi ) =
∫
Rm
ϕ(z,β | ze, zi ) f (zi | ze,Bi ) dzi

=
∫
Rm
ϕ(z,β | ze, zi )

∫
Rp×RK

ϕ̄(zi | ze, z̃, β̃,Bi )

× f (z̃, β̃ | ze,Bi ) dz̃dβ̃ dzi

=
∫
Rp×RK

(∫
Rm
ϕ(z,β | ze, zi )ϕ̄(zi | ze, z̃, β̃,Bi ) dzi

)
× f (z̃, β̃ | ze,Bi ) dz̃dβ̃

=
∫
Rp×RK

K (z,β; z̃, β̃) f (z̃, β̃ | ze,Bi ) dz̃dβ̃


